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Overview of the situation

public-key
primitives

secret-key
primitives

modes of operation

protocols

High-level layers: security proofs in some models
(random oracle model, ideal cipher model . . . ).

Low-level layer: very fragile situation.

Nessie portfolio of recommended cryptographic primitives (Feb. 2003) :
� Stream ciphers and pseudorandom number generators:
the Nessie portfolio in this category is empty. �
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Secret-key vs. public-key ciphers

algorithms for achieving con�dentiality

public-key secret-key
(asymmetric) (symmetric)

RSA, elliptic curves AES, DES
no key exchange key exchange

RSA-OAEP:
{ 24 Kcycles/Byte
484 Kcycles/Byte

AES-CTR: 30 cycles/Byte
Sosemanuk: 6.5 cycles/Byte

In practice: the session key is transmitted with a public-key cipher and
the data are enciphered by a secret-key algorithm.

−→ Pressing demand for secure and fast algorithms dedicated to low-
cost devices: E0 (Bluetooth), A5/1 (GSM), Kasumi (UMTS)...
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The game

Problem. Design a secure and e�cient cipher

- - -

6

newciphernewdedicated new
componentscriteriaattack

formalization

analysis of the structure

mathematical
construction

Approach.

• Consider all aspects together, from the most theoretical ones to
the very practical ones.

• The very particular building-blocks achieving optimal resistance
and optimal implementation may introduce unintended weaknesses.

3



Outline

1. Stream ciphers
• Some security criteria for the �ltering function
(distinguishing attacks, correlation attacks,...)

• Construction of appropriate �ltering functions
2. Block ciphers

• Some security criteria for the S-boxes
• Optimal S-boxes for linear and di�erential cryptanalysis
• Weaknesses induced by optimal S-boxes
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Stream ciphers
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Additive synchronous stream ciphers

g
keystream generator -
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Known-plaintext attacks:

• Key-recovery attacks: recover the secret-key from N keystream
bits;

• Initial state-recovery attacks: recover the initial state from N keys-
tream bits;

• Distinguishing attacks: distinguish N keystream bits from a ran-
dom sequence.
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General design

initialization
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n bits, n ≥ 2k
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General design
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General design
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Augmented function of a �ltered shift register

xt+γn xt+γ1

st: keystream

f

feedback

st = f(xt+γ1,xt+γ2, . . . ,xt+γn)

Attack principle. Exploit a bias in the distribution of (st,st+τ ), t ≥ 0,
for a �xed τ .

Proposition. [Golic 96][C. 06] (st+γ1, . . . ,st+γn) is uniformly distributed
if and only if

f(x1, . . . ,xn) = x1 + g(x2, . . . ,xn)

or f(x1, . . . ,xn) = g(x1, . . . ,xn−1) + xn .
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Walsh transform of a Boolean function

Imbalance of a Boolean function.
For any Boolean function f of n variables

F(f) =
∑

x∈Fn
2

(−1)f(x) = 2n − 2wt(f).

Linear functions of n variables.
ϕa : x 7−→ a · x

Walsh spectrum of f : Fn
2 → F2

{
F(f + ϕa) =

∑

x∈Fn
2

(−1)f(x)+a·x, a ∈ Fn
2

}

Nonlinearity of f : Fn
2 → F2

Hamming distance of f to {ϕa + ε, a ∈ Fn
2 , ε ∈ F2}.

2n−1 − 1

2
L(f) where L(f) = max

a
|F(f + ϕa)| .

11



Distinguisher based on sparse parity-check relations

[Molland-Helleseth 04], [Englund-Johansson 04], [Leveiller et al. 02]

For LFSR-based generators.

• Search for a parity-check relation of weight w for the LFSR:
xt + xt+τ1 + . . . + xt+τw−1 = 0, ∀t.

• Distinguish the distribution of (st,st+τ1, . . . ,st+τw−1)

from the uniform distribution.

Complexity.

time complexity =
w

∆2
w

data complexity =
1

∆2
w

+ τw−1

with ∆w = 2−wn
∑

λ∈Fn
2

Fw(f + ϕλ).

Reverse-engineering techniques [C.-Filiol00][Cluzeau 04]
12



Correlation attack [Siegenthaler 85]
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where g is a function such that

pg = PrY ,Z[f(Y ,Z) = g(Y )] >
1

2
.
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Approximation of f by a function of fewer variables
[Zhang-Chan 00][C.-Trabbia 00][C. 02]

Proposition. Let V ⊂ Fn
2 and g : V −→ F2.

max
g∈Boo`V

∣∣∣∣pg − 1

2

∣∣∣∣ ≤ 1

2n+1


 ∑

λ∈V

F2(f + ϕλ)




1/2

In particular:

• For any V of dimension `,

max
g

∣∣∣∣pg − 1

2

∣∣∣∣ ≤ 2
`
2−n−1L(f).

• For f balanced,

pg =
1

2
for any g depending on t variables

if and only if f is t-resilient.
• The best approximation of a t-resilient function f by a function
of (t + 1) variables is a�ne.
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Correlation attack as a decoding problem [Meier-Sta�elbach 88]
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binary symmetric channel

Error probability:

∀t ≥ 0, Pr[st 6= σt] = 1 − pg <
1

2

(σt)t<N belongs to the code of length N and size 2`

de�ned by Φ1 and g.
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Iterative decoding using parity-check equations of weight w

[Meier-Sta�elbach 88], [C.-Trabbia 00]

• Find some multiples of weight w of the feedback polynomial.
• Exploit the parity-check relations for decoding the received word
with an iterative decoding algorithm (variant of Gallager's algo-
rithm).

Number of keystream bits: ∝
(

1

2ε

)2(w−2)
w−1

2
`

w−1.

Precomputation ' Nw−2

(w − 2)!
Decoding ∝

(
1

2ε

)2w(w−2)
w−1

2
`

w−1 .

For w = 4 :
` = 40, p = 0.44, N = 400 000 keystream bits.

Precomputation: 9 h, decoding: 1.5 h.
` = 60, p = 0.4, N = 900 000 keystream bits, 238 operations.
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Search for appropriate �ltering functions

Security criteria.

• balancedness;
• nonlinearity;
• w-th power moments of the Walsh spectrum for small w;
• algebraic-immunity.

Highest possible nonlinearity.

2
n
2 ≤ min

f∈Booln
L(f) ≤ 2

n+1
2

where the lower bound is tight if and only if n is even and f is bent.

Implementation constraints.

• symmetric functions [C.-Videau05];
• components of power functions.
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Components of power functions

linearxs
n bits

Sλ : x 7−→ Tr(λxs) over F2n, λ ∈ F∗
2n

Proposition. The Hamming weight of Sλ is divisible by gcd(s,2n − 1).
In particular:

• Sλ is balanced if and only if gcd(s,2n − 1) = 1.
• If Sλ is bent, then gcd(s,2n − 1) > 1

and s is coprime either with (2
n
2 − 1) or with (2

n
2 + 1).
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Balanced components of power functions

• For odd n:
L(Sλ) ≥ 2

n+1
2

with equality for almost bent (AB) functions.
• For even n: it is conjectured that

L(Sλ) ≥ 2
n
2+1

Proposition. For λ 6= 0,
∑

µ∈Fn
2

F3(Sλ + ϕµ) = 22n+1 + 22n(δ1 − 2)

∑

µ∈Fn
2

F4(Sλ + ϕµ) = 23n+1 + 22n
∑

c∈Fn
2

δc(δc − 2)

with δc = |{x ∈ F2n, (x + 1)s + xs = c}| .
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Restrictions of a bent function

Proposition. [C.-Carlet-Charpin-Fontaine 01]
f is a bent function of n variables, n even, if and only if
for any hyperplane H, the restrictions of f to H and H are
such that their Walsh spectra are {0, ± 2

n
2} and

F(fH + ϕλ) 6= F(fH + ϕλ), ∀λ ∈ Fn−1
2 .

linear
xs

n bits

0

on F2n+1
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Power functions with bent components

Problem. Find all integers s such that there exists λ ∈ F2n for which

x 7−→ Tr(λxs) is bent .

PSap a(2
n
2 − 1) gcd(a,2

n
2 + 1) = 1 [Dillon74]

[Lachaud-Wolfmann90]
Kasami 22i − 2i + 1 gcd(i,n) = 1 [Dillon-Dobbertin04]
Maiorana 2i + 1 n

gcd(n,i)
even [Gold68]

-McFarland (2
n
4 + 1)2 n ≡ 0 mod 4 [Leander05]

2
n
3 + 2

n
6 + 1 n ≡ 0 mod 6 [C-Charpin-Kyureghyan 06]
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Block ciphers
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Iterated block ciphers
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Last-round attack

Principle. Exploit a distinguisher for the reduced cipher,
i.e., for (r − 1) rounds.

k: candidate for kr

h h h

F- - F

h

-
c

k

F −1 - y- -F . . .Hk : m

k1 kr−1 kr

Correct guess

h

F- y-

h

-

kr−1

-F . . .mHkr
:

k1

Wrong guess

' random permutation (hypothesis of wrong-key randomization)
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Di�erential cryptanalysis [Biham-Shamir 91]

Principle. Exploit a bias in the distribution of a derivative of the reduced
cipher

DaGk : x 7−→ Gk(x + a) + Gk(x)

Security criterion for the round function

δF = max
a,b 6=0

#{X ∈ Fn
2 , F (X + a) + F (X) = b} must be small.

Proposition. [Nyberg-Knudsen 92]
For any F : Fn

2 −→ Fn
2 , δF ≥ 2 .

In case of equality, F is almost perfect nonlinear (APN).
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Linear cryptanalysis [Matsui 93] [Gilbert-Chassé 91]

Principle. Exploit an a�ne approximation of the reduced cipher.

Security criterion for the round function

L(F ) = max
a,b6=0

∣∣∣
∑

x∈Fn
2

(−1)b·F (x)+a·x
∣∣∣ must be small.

Proposition. [Sidelnikov 71] [Chabaud-Vaudenay 94]
For any function F : Fn

2 −→ Fn
2 ,

L(F ) ≥ 2
n+1

2

In case of equality, F is almost bent (AB) (n odd).
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3-rd and 4-th power moments of S-boxes

Let F : Fn
2 −→ Fn

2 and Fλ : x 7−→ λ · F (x), λ 6= 0.

Theorem.
∑

λ∈Fn
2\{0}

∑

µ∈Fn
2

F3(Fλ + ϕµ) = 22n+1(2n − 1) + 22nD0(F )

∑

λ∈Fn
2\{0}

∑

µ∈Fn
2

F4(Fλ + ϕµ) = 23n+1(2n − 1) + 22nD(F )

where
D0(F ) = |(a,b), a,b ∈ Fn

2 \ {0}, a 6= b, DaDbF (0) = 0}|
D(F ) = |(a,b,x), a,b ∈ Fn

2 \ {0}, x ∈ Fn
2 , a 6= b, DaDbF (x) = 0}|

Corollary. [Berger - C. - Charpin - Laigle-Chapuy 06]
∑

λ∈Fn
2\{0}

∑

µ∈Fn
2

F4(Fλ + ϕµ) ≥ 23n+1(2n − 1)

with equality if and only if F is APN.
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Link between APN and AB properties

Theorem. [C.-Charpin-Dobbertin 99]
Let F : Fn

2 −→ Fn
2 , and

D(F ) = |(a,b,x), a,b ∈ Fn
2 \ {0}, x ∈ Fn

2 , a 6= b, DaDbF (x) = 0}| .

(i)
D(F ) ≤ (2n − 1)

(
L2(F ) − 2n+1

)

with equality if and only if all F(Fλ + ϕµ) are in {0, ± L(F )}.
(ii) If all nonzero Walsh coe�cients are such that |F(Fλ + ϕµ)| ≥ L0,

then
D(F ) ≥ (2n − 1)

(
L2

0 − 2n+1
)

,

with equality if and only if all F(Fλ + ϕµ) are in {0, ± L0}.

Corollary. [Chabaud-Vaudenay94]
Let F : Fn

2 −→ Fn
2 , n odd. If F is AB, then F is APN.
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Link between APN and AB properties (2)

Corollary. [C.-Charpin-Dobbertin 99]
Let F : Fn

2 −→ Fn
2 , n odd.

F is AB if and only if F is APN and all its Walsh coe�cients are
divisible by 2

n+1
2 .

For power functions: the divisibility of the Walsh coe�cients can be
computed by McEliece theorem.

Theorem. Let S : x 7−→ xs over F2n, n odd.
S is AB if and only if S is APN and for all integers u, 0 ≤ u ≤ 2n − 1,

w2(us mod (2n − 1)) ≤ w2(u) +
n − 1

2
.
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Known AB power functions S : x 7→ xs over F2n with n = 2t + 1

exponents s

quadratic 2i + 1 with gcd(i,n) = 1, [Gold 68],[Nyberg 93]
1 ≤ i ≤ t

Kasami 22i − 2i + 1 with gcd(i,n) = 1 [Kasami 71]
2 ≤ i ≤ t

Welch 2t + 3 [Dobbertin 98]
[C.-Charpin-Dobbertin 00]

Niho 2t + 2
t
2 − 1 if t is even [Dobbertin 98]

2t + 2
3t+1

2 − 1 if t is odd [Xiang-Hollmann 01]
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Optimal functions for even n

Resistance to linear attacks.

Conjecture. For any S : x 7−→ xs over F2n, n even,

L(S) ≥ 2
n
2+1

Theorem. The conjecture holds if gcd(s,2n − 1) > 1.
Moreover, if L(S) = 2

n
2+1, then gcd(s,2n − 1) = 3 and

F(Sλ) =

{
(−1)

n
2+12

n
2+1 if λ ∈ {x3,x ∈ F?

2n}
(−1)

n
22

n
2 if λ 6∈ {x3,x ∈ F?

2n} .

Resistance to di�erential attacks.

There is no APN power permutations.

Open problem. Find an APN permutation over F2n, n even.
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Di�erentially 4-uniform power permutations for even n

n s w2(s) s−1 w2(s
−1) L(S) divisibility

n = 12 73 3 731 7 128 6
2047 11 2047 11 128 2 inverse

n = 14 5 2 3277 7 256 8 Q(2)

17 2 2893 7 256 8 Q(4)

65 2 2773 7 256 8 Q(6)

13 3 1339 7 256 8 K(2)

241 5 205 5 256 8 K(4)

319 7 979 7 256 8 K(6)

8191 13 8191 13 256 2 inverse
n = 16 32767 15 32767 15 512 2 inverse
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Divisibility and higher-order di�erential attacks

Principle. [Knudsen 95]
Find a subspace V ⊂ Fn

2 such that the reduced cipher Gk satis�es
∑

v∈V

Gk(x + v) = 0, ∀x.

Any V with dim V > deg Gk satis�es this property.
Problem. Determine the degree of the reduced cipher, i.e., improve

deg Gk ≤ (deg Fk)r−1

Theorem. [C. - Videau 02]
If the Walsh coe�cients of F are all divisible by 2`, then

deg(F ′ ◦ F ) ≤ deg(F ′) + n − ` .

For instance, if F is AB, then

deg(F ′ ◦ F ) ≤ deg(F ′) +
n − 1

2
.
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Power permutations over F28

s w2(s) s−1 w2(s
−1) δ(S) quadratic relationsL(S)

7 3 37 3 6 24 64
11 3 29 4 10 24 64
13 3 59 5 12 16 64 K(2)

19 3 47 5 16 24 48 Niho
23 4 61 5 16 20 64 Niho
31 5 91 5 16 36 32 K(4)

43 4 43 4 30 28 96
53 4 53 4 16 18 64 Niho
127 7 127 7 4 39 32 inv.

All power permutations over F28 have quadratic relations between
their inputs and outputs.

For 10 ≤ n ≤ 16, x 7−→ x53 does not have any quadratic relations.
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Conclusions

What is provably secure is probably not. (L. Knudsen)

Paradox for hardware-oriented ciphers:
Every Boolean function having a strong algebraic structure is weak.
The implementation complexity of almost all n-variable Boolean func-
tions is greater than 2n/n.

−→ search for suboptimal functions regarding both the resistance to
known attacks and the implementation complexity.

• de�ne relevant criteria related to hardware implementation;
• design e�cient algorithms for constructing suboptimal functions;
• �nd appropriate mathematical tools for studying suboptimal func-
tions.
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