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Overview of the situation

protocols

modes of operation

public-key secret-key
primitives primitives

High-level layers: security proofs in some models
(random oracle model, ideal cipher model .. .).

Low-level layer: very fragile situation.

Nessie portfolio of recommended cryptographic primitives (Feb. 2003) :
« Stream ciphers and pseudorandom number generators:
the Nessie portfolio in this category is empty. »



Secret-key vs. public-key ciphers

algorithms for achieving confidentiality

public-key secret-key
(asymmetric) (symmetric)
RSA, elliptic curves AES, DES
no key exchange key exchange
RSA-OAEP: { 24 Kcycles/Byte AES-CTR: 30 cycles/Byte
484 Kcycles/Byte Sosemanuk: 6.5 cycles/Byte

In practice: the session key is transmitted with a public-key cipher and
the data are enciphered by a secret-key algorithm.

—— Pressing demand for secure and fast algorithms dedicated to low-
cost devices: EO (Bluetooth), A5/1 (GSM), Kasumi (UMTS)...



The game

Problem. Design a secure and efficient cipher

mathematical

construction

dedicated . new _ hew new
attack criteria components Cipher

formalization

analysis of the structure

Approach.

e Consider all aspects together, from the most theoretical ones to
the very practical ones.

e T he very particular building-blocks achieving optimal resistance
and optimal implementation may introduce unintended weaknesses.



Outline

1. Stream ciphers

e Some security criteria for the filtering function
(distinguishing attacks, correlation attacks,...)

e Construction of appropriate filtering functions
2. Block ciphers
e Some security criteria for the S-boxes
e Optimal S-boxes for linear and differential cryptanalysis
e \Weaknesses induced by optimal S-boxes



Stream ciphers



Additive synchronous stream ciphers

keystream
Sq
keystream generator f—|_-\ - Gy
W/ ciphertext
K, initial value
my
plaintext

Known-plaintext attacks:

e Key-recovery attacks: recover the secret-key from N keystream
bits;

e [nitial state-recovery attacks: recover the initial state from N keys-
tream bits;

e Distinguishing attacks: distinguish N keystream bits from a ran-
dom sequence.



General design

secret key public
k bits initial value

N/

initialization

internal state T
n bits, n > 2k 0

initial state




General design

secret key public
k bits initial value

N/

initialization

internal state T
n bits, n > 2k 0 i

filter f

keystream S0



General design

secret key

k bits

internal state
n bits, n > 2k

filter

keystream

public

initial value

N/

initialization

L0

4>4>

S0

transition




Augmented function of a filtered shift register

si. keystream

Litm Lty

feedback

St = f($t+'71vxt+729 oo th+'7n)

Attack principle. Exploit a bias in the distribution of (s¢,s¢++), t > 0,
for a fixed 7.

Proposition. [Golic 96][C. 06] (St4~ys« -« +St+ny,) iS uniformly distributed
if and only if

f(wla <. awn) = I —|—g(:132, <. ,iUn)

or f(®1y...yxn) = g(®1y...sTn_1) + Tn .



Walsh transform of a Boolean function

Imbalance of a Boolean function.
For any Boolean function f of m variables

F(f) =Y (=1)F@ =2m _2wi(f).

wEFg

Linear functions of n variables.

SOal s r— a--x
Walsh spectrum of f : Fy — Fo

{Fr+ea = Y )f@te, a ey}
xeFy

Nonlinearity of f : F — F»
Hamming distance of f to

2l CL(f)  where £(f) = max |F(f + pa)l -
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Distinguisher based on sparse parity-check relations

[Molland-Helleseth 04], [Englund-Johansson 04], [Leveiller et al. 02]

For LFSR-based generators.

e Search for a parity-check relation of weight w for the LFSR:
rt + Tty + oo+ Tp4ry, 1 = 0, Vt.
e Distinguish the distribution of (S¢,St4rys+-« - +»St+1y_1)
from the uniform distribution.

AEF?

Reverse-engineering techniques [C.-Filiol00][Cluzeau 04]
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Correlation attack [Siegenthaler 85]

)
Py
Yo | =0 yi1| =1
f J
keystream sg S1
target sequence oo 71
g g
Yo Y1

®q
where g is a function such that

pg = Pry z[f(Y,Z) = g(Y)] > %



Approximation of f by a function of fewer variables
[Zhang-Chan 00][C.-Trabbia 00][C. 02]

Proposition. Let V C F§ and g: V — Fa.
1/2

Imax

1
< F?
g€EBooly, — 2n+l Z (f + )

A€V

1
2

In particular:

e For any V of dimension £,

max
g

1 L
pg_§‘§22 " 1£(f)°

e For f balanced,

1
Dg = > for any g depending on t variables

if and only if f is t-resilient.

e The best approximation of a t-resilient function f by a function
of (t + 1) variables is affine.
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Correlation attack as a decoding problem [Meier-Staffelbach 88]

binary symmetric channel

1-p
o 0 0 s (keystream)
¢ wo 9
— 1o 1

Error probability:

1
vVt > 0, Pr[8t750t]:1—pg<§

(0¢)¢< N belongs to the code of length IN and size 2¢
defined by ®; and g.
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Iterative decoding using parity-check equations of weight w
[Meier-Staffelbach 88], [C.-Trabbia 00]

e Find some multiples of weight w of the feedback polynomial.

e EXxploit the parity-check relations for decoding the received word
with an iterative decoding algorithm (variant of Gallager’s algo-
rithm).

2(w—2)
1 w—1 L
Number of keystream bits: « (2—) 2w—1,
g
Nw—2 =
Precomputation ~ Decoding « (— 2w—1
(w — 2)! 2e

= 40, p = 0.44, N = 400 000 keystream bits.
Precomputation: 9 h, decoding: 1.5 h.
¢ =60, p=0.4, N = 900 000 keystream bits, 238 operations.



Search for appropriate filtering functions

Security criteria.

e balancedness;
e nonlinearity;
e w-th power moments of the Walsh spectrum for small w:;

e algebraic-immunity.

Highest possible nonlinearity.

n n+1
22 < min L(f) <22
f€Bool,,

where the lower bound is tight if and only if n is even and f is bent.

Implementation constraints.

e symmetric functions [C.-Videau05];
e components of power functions.
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Components of power functions

n bits —= X linea—

Sy : & — Tr(Az®) over Fan, X € F3,

Proposition. The Hamming weight of S} is divisible by ged(s,2™ — 1).

In particular:

e S, is balanced if and only if ged(s,2™ — 1) = 1.

e If Sy is bent, then ged(s,2™" — 1) > 1
and s is coprime either with (22 — 1) or with (22 4+ 1).

18



Balanced components of power functions
e For odd n:
n+1
L(Sy) = 22

with equality for almost bent (AB) functions.
e For even n: it is conjectured that

£(Sy) > 221!

Proposition. For A # 0,

> FiSa+ep) = 22T 4 220(6; - 2)

peEFy
Y FHSA+eu) = 22T 4227 N 5e(de — 2)
peEFy ceFy

with dc = |{x € Fon, (x+1)° +x° =c}| .
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Restrictions of a bent function

Proposition. [C.-Carlet-Charpin-Fontaine 01]
f is a bent function of n variables, n even, if and only if
for any hyperplane H, the restrictions of f to H and H are
such that their Walsh spectra are {0, + 2%} and

F(fu +¢x) # F(fg+ex)s VAEF3 .

n bits | ——= linear—

. ——=0n F2n_|_1
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Power functions with bent components

Problem. Find all integers s such that there exists A € Fon for which

x — Tr(Ax®) is bent .

PSap a(22 —1)  ged(a,22 +1) =1 | [Dillon74]
Lachaud-Wolfmann90]
Kasami 22t _ 2t 4+ 1 ged(i,n) =1 Dillon-Dobbertin04]
Maiorana 2 4+ 1 m even (Gold68]
-McFarland (2% +1)2 n = 0 mod 4 Leander05]
23 + 26 +1 n=0mod6 [C-Charpin-Kyureghyan 06]

21




Block ciphers
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Iterated block ciphers

1

|

|

m —— F r e — F - C
plaintext ciphertext
n bits n bits
T rounds

where the round function Fj is a permutation of Fy for all k € K



Last-round attack

Principle. Exploit a distinguisher for the reduced cipher,
i.e., for (r — 1) rounds.

k: candidate for k,

k1 kr—1 k, k
} I S
H.-m +F + ... «~F — F —p1-y9

Correct guess kq

L

kr—1
e
H; :m — F

r

— Y

Wrong guess

~ random permutation (hypothesis of wrong-key randomization)
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Differential cryptanalysis [Biham-Shamir 91]

Principle. Exploit a bias in the distribution of a derivative of the reduced
cipher

D.,Gy : x — Gp(x + a) + Gi(x)

Security criterion for the round function

op = I%gé}% #{X € Fy, F(X +a)+ F(X) =b} must be small.
a,

Proposition. [Nyberg-Knudsen 92]
For any F : Fy — F%, 6p > 2.
In case of equality, F' is almost perfect nonlinear (APN).
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Linear cryptanalysis [Matsui 93] [Gilbert-Chassé 91]

Principle. Exploit an affine approximation of the reduced cipher.

Security criterion for the round function

L(F) = max ‘ Z (—1)0F @)+ must be small.
a,b#0 Jpmel
2

Proposition. [Sidelnikov 71] [Chabaud-Vaudenay 94]
For any function F : Fy — F¥,

n—+1
L(F) > 2"
In case of equality, F' is almost bent (AB) (n odd).
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3-rd and 4-th power moments of S-boxes
Let F: F§ — F3 and F :x—— X - F(x), A #0.

T heorem.

Y D FE+ ) = 227TH2" — 1) + 22" Dy (F)
AEF\{0} uEFY

YD FHFA+ e

AEFI\{0} neFy

where
Do(F) = |(a)b), a,b € F3 \ {0}, a # b, DaDpF(0) = 0}
D(F) = |(a,b,x), a,b € F3 \ {0}, z € F§,a # b, DqoDyF(x) = 0}

Corollary. [Berger - C. - Charpin - Laigle-Chapuy 06]
S Y FE e 2 25 @0 1)
AEFZ\{0} pneFy
with equality if and only if F' is APN.
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Link between APN and AB properties
Theorem. [C.-Charpin-Dobbertin 99]
Let F: F§ — FZ, and
D(F) = |(a,b,x), a,b € F3 \ {0}, z € F},a # b, DqoDyF(x) = 0}] .
(i)
D(F) < (2™ — 1) (£2(F) - 2n+1)

with equality if and only if all F(F) + ¢,) are in {0, £ L(F)}.

(ii) If all nonzero Walsh coefficients are such that |F(Fy 4+ ¢u)| > Lo,
then

D(F) > (2" —1) (L — 2"*1)
with equality if and only if all F(F) + ¢,) are in {0, £ Lo}.

Corollary. [Chabaud-Vaudenay94]
Let F: Fy — F3, n odd. If F is AB, then F is APN.
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Link between APN and AB properties (2)

Corollary. [C.-Charpin-Dobbertin 99]
Let F: F§ — F3, n odd.

F is AB if and only if F is APN and all its Walsh coefficients are
_|_
divisible by 2 2 .

For power functions: the divisibility of the Walsh coefficients can be
computed by McEliece theorem.

Theorem. Let S:x+—— 2% over Fon, n odd.
S is AB if and only if S is APN and for all integers u, 0 < u < 2™ — 1,

n—1
5 .

wa(us mod (2" — 1)) < wa(u) +

29



Known AB power functions S :x +— z° over Fon with n =2t 41

exponents s

[Gold 68],[Nyberg 93]

quadratic 2¢ + 1 with ged(é,n) =1,
1<i<t
Kasami | 22* — 2* 4+ 1 with ged(é,n) = 1 | [Kasami 71]
2<i<t
Welch 2t + 3 ‘Dobbertin 98]
[C.-Charpin-Dobbertin 00]
Niho 2t 4 22 — 1 if t is even Dobbertin 98]

. 3t+1 o,
2"+2 2 —1iftis odd

[ Xiang-Hollmann 01]
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Optimal functions for even n

Resistance to linear attacks.
Conjecture. For any S : x —— x% over Fon, n even,

£(S) > 2211

Theorem. The conjecture holds if ged(s,2™ — 1) > 1.
n
Moreover, if £(S) = 2211 then ged(s,2™ — 1) = 3 and

(—1)2t122+1 if X € {x3,0 € F3,}
(—1)222 if A & {232 € F4,} .

Resistance to differential attacks.
There is no APN power permutations.

Open problem. Find an APN permutation over Fan, nn even.



Differentially 4-uniform power permutations for even n

n S wa(s) | s wa(s™1) | L(S) | divisibility
n =12 73 3 731 4 128 6
2047 11 2047 11 128 2 inverse
n=14] 5 > | 3277 7 256 8 o(2)
17 2 | 2893 7 256 8 O(4)
65 > | 2773 7 256 8 o(6)
13 3 | 1339 7 256 8 K(2)
241 5 205 5 256 8 K(4)
319 7 979 7 256 8 K(6)
8191 13 3191 13 256 2 inverse
n =16 | 32767 15 32767 15 512 2 inverse
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Divisibility and higher-order differential attacks

Principle. [Knudsen 95]
Find a subspace V C F¥ such that the reduced cipher G}, satisfies

Z Gi(x +v) =0, V.
veV

Any V with dim V' > deg G, satisfies this property.

Problem. Determine the degree of the reduced cipher, i.e., improve
deg Gj, < (deg Fy,)" "

Theorem. [C. - Videau 02]
If the Walsh coefficients of F' are all divisible by 2‘3, then
deg(F' o F) < deg(F')+n —¢ .
For instance, if F' is AB, then
n—1

deg(F’ o F) < deg(F’) + y

33



Power permutations over F28

s |lwa(s)|s™Hwa(s71)||6(S)|quadratic relations|£(S)
4 3 37 3 §) 24 04
11 3 29 4 10 24 04
13| 3 [[59] 5 |12 16 64 |1C(2)
19 3 47 5 16 24 48 |Niho
23 4 61 5 16 20 64 |Niho
31| 5 |91 5 | 16 36 32 |KC(4)
43 4 43 4 30 23 06
53 4 53 4 16 18 64 |Niho
127, 7 ||127 4 4 39 32 |inv.

All power permutations over F,s have quadratic relations between
their inputs and outputs.

For 10 < n < 16, £ — x®3 does not have any quadratic relations.



Cconclusions

What is provably secure is probably not. (L. Knudsen)

Paradox for hardware-oriented ciphers:
Every Boolean function having a strong algebraic structure is weak.
The implementation complexity of almost all n-variable Boolean func-
tions is greater than 2" /n.

—— search for suboptimal functions regarding both the resistance to
known attacks and the implementation complexity.

e define relevant criteria related to hardware implementation;
e design efficient algorithms for constructing suboptimal functions;

e find appropriate mathematical tools for studying suboptimal func-
tions.
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